Silicide Powder

  • 0
  • 0

Hexagonal Boron Nitride is 10 Times Stronger Than Graphene

Roche and its subsidiary TIB Molbiol have developed a series of tests for the detection of the monkeypox virus, the Switzerland-based pharmaceutical company announced.  

The monkeypox virus is a close relative of the smallpox virus, belonging to orthpoxviridae in the poxviridae family.  

The modular virus detection tool, called LightMix, includes three orthpoxvirus detection kits with different functions, Roche said in a statement. The first kit detects orthpoxvirus; The second kit tests only for monkeypox virus (west and Central African branches); The third kit contains the main functions of the first two kits, showing specific information on the presence of the monkeypox virus (west and Central African branches) as well as the detection of orpoxvirus.

Thomas Schinek, a Roche executive, said the new test could detect monkeypox and help track its spread. Such diagnostic tools are critical for addressing and ultimately managing emerging public health challenges, as they advance responses such as tracking efforts and treatment strategies.  

The monkeypox virus was first identified in 1958 in a group of monkeys used for research when the animals developed a "pox-like" infection, hence the name. Since May, several non-endemic countries have reported human cases of the monkeypox virus, including the United Kingdom, the United States, Portugal, Spain, and Italy.

Affected by the ever-changing international situation, the supply and prices of international bulk boron nitride are still very uncertain.

Hexagonal boron nitride (H-BN) is a two-dimensional layered broadband-gap insulating material with good heat resistance, chemical stability, and dielectric properties. It is widely used in electronic devices.

Hexagonal boron nitride is structurally similar to graphene, consisting of a planar lattice of atoms arranged in interconnected hexagons. The only difference is that in graphene, all atoms are carbon, whereas, in H-BN, each hexagon contains three nitrogen atoms and three boron atoms.




Carbon-carbon bonds are among the strongest, so graphene is theoretically much stronger than H-BN. The strength and elastic modulus of the two materials are similar, and h-BN is slightly lower in comparison: graphene has a strength of about 130GPa and young's modulus of about 1.0TPa; The strength and modulus of H-BN are 100GPa and 0.8 TPA, respectively.
Despite its excellent mechanical properties, graphene has low crack resistance, which means graphene is brittle.
 
In 1921, British engineer Griffiths published a theoretical study of fracture mechanics, describing the failure of brittle materials and the relationship between the size of cracks in materials and the force required to make them grow. For hundreds of years, scientists and engineers have used this theory to predict and define the toughness of materials.
In 2014, a study by Professor Jun Lou and his team at Rice University showed that graphene's fracture toughness is consistent with Griffith's theory of fracture mechanics: when the stress applied to graphene is greater than the force holding it together, the cracks propagate, And the energy difference is released during crack propagation. 
H-bn is also thought to be vulnerable, given its structural similarity to graphene. However, this is not the case.
 
The scientists found that H-BN is 10 times more ductile than graphene. 
A team led by Prof. Jun Lou of Rice University and Prof. Hua Jian Gao of Nanyang Technological University in Singapore has found that the brittle H-BN is 10 times stronger than graphene in cracking resistance.  This finding runs counter to Griffith's fracture theory, and such anomalies have never been observed before in two-dimensional materials.  The related research results were published in Nature with the title "Intrinsic Toughening and stable crack propagation in Hexagonal Boron nitride". 
 
Mechanism Behind H-BN's Extraordinary Toughness 
To find out why, the team applied stress to the H-BN sample, using scanning electron microscopes and transmission electron microscopes to see as much as possible how the cracks occurred. After more than 1,000 hours of experiments and subsequent theoretical analysis, they discovered the mystery. 



Although graphene and H-Bn may be structurally similar, boron and nitrogen atoms are not the same, so there is an asymmetric arrangement of hexagonal lattice intrinsic in H-BN, unlike the carbon hexagon in graphene. That is, in graphene, the cracks tend to go straight through the symmetrical hexagonal structure from top to bottom, opening the bond like a zipper. The hexagonal structure of H-BN is slightly asymmetric due to the stress contrast between boron and nitrogen, and this inherent asymmetry of the lattice causes cracks to bifurcate, forming branches. 
And if the crack bifurcates, that means it's rotating. The existence of this steering crack requires additional energy to further promote the crack propagation, which makes the crack more difficult to propagate and effectively enhances the toughness of the material. That's why H-Bn shows more elasticity than graphene.
 
Due to its excellent heat resistance, chemical stability, and dielectric properties, H-BN has become an extremely important material for two-dimensional electronic and other 2-bit devices, not only as a support base but also as an insulating layer between electronic components. Today, h-BN's toughness makes it an ideal choice for flexible electronics and is important for the development of flexible 2D materials for applications such as two-dimensional electronics.
In the future, as well as being used in flexible electronic textiles, h-BN could also be used as flexible electronic skin and implantable electronics that can be connected directly to the brain.
 
Boron Nitride BN Powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest BN powder price, you can send us your inquiry for a quote. ([email protected])
 
Boron Nitride BN Powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including 
silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality BN powder, please feel free to contact us and send an inquiry. ([email protected])
 

The current international situation is highly uncertain, and its economic impact has not been able to be assessed properly. In addition, rising energy and commodity prices and supply chain disruptions are expected to push the price of the boron nitride higher.

Inquiry us

Our Latest Silicide Powder

There are several production methods for iron oxide

Nano Fe3O4,the chemical formula is Fe3O4.Usually called black iron oxide,magnetite and black iron oxide,it is a black crystal with magnetism,so it is also called magnetic iron oxide.…

What is Boron Carbide Used For?

Boron carbide (B4C) is an extremely hard boron-carbon ceramic and covalent material used in tank armor, bulletproof vests, engine damage powder, and many industrial applications.…

What is Zinc Stearate Used For?

A wave of layoffs that has swept the entire Internet industry has intensified. China's Internet industry has experienced several crises and major changes in the past development process. There is also a "brief history of layoffs by major Internet com…